

Nitrogen & the European greenhouse gas balance

Mark Sutton

RSC, London 9 March 2010

Why care about reactive nitrogen (Nr)?

NitroEurope IP

What is the effect of reactive nitrogen supply on the direction and magnitude of net greenhouse gas budgets for Europe?

Effect of N on the GHG balance:

↑ GHG	?	↓ GHG
N ₂ O (+2' from NH ₃ , NO ₃ ⁻)	Cattle CH ₄	C uptake by plants
CH ₄ from wetlands	SOM decomposition	Nitrogen aerosol
$NO_x \rightarrow O_3 \rightarrow less primary$ production		

IPCC 4th Assessment 2007

Radiative Forcing Components

NitroEurope: Flux network (C1) & Manipulation network (C2)

- 9 Regional Sites (Level 2)
- 50 Inferential Sites (Level 1)

22 Core Manipulation Sites

14 Assoc. Manipulation Sites

Estimatting atmospheric N inputs (L1)

Also for

NO₃-, NH₃, NH₄+, HNO₂, NO₂for N deposition to Level 1 sites

(Plus SO₂, SO₄²⁻, HCl, Cl & Base Cations)

Tang et al. *Agriculture, Ecosystems & Environment.* **133**, 183-195.

Calculating Dry N depos To the NEU Level 1 sites

Ammonia is the biggest uncertainty

Flechard et al. Atmos. Chem. and Physics, 2011

N₂O fluxes from a grazed grassland in Scotland

 Cumulative flux

 [kg N ha⁻¹ y⁻¹]

 2007
 11.2

 2008
 10.4

 2009
 4.0

Emission factor [%]* 2007 6.5 2008 3.7 2009 1.6

* N₂O as % of total fertiliser N added

2006 2007

2008

2009

Pulling the flux estimates together Oensingen NEU 'Super Site'

Does N drive forest C sequestration?

NATURE|Vol 000|00 Month 2008

BRIEF COMMUNICATIONS

Ecologically implausible carbon response?

Arising from: F. Magnani et al. Nature 447, 848–850 (2007)

Magnani et al.¹ present a very strong correlation between mean lifetime net ecosystem production (NEP, defined as the net rate of carbon (C) accumulation in ecosystems²) and wet nitrogen (N) deposition. For their data in the range 4.9–9.8 kg N ha¬¹ yr¬¹, on which the correlation largely depends, the response is approximately 725 kg C per kg N in wet deposition. According to the authors, the maximum N wet deposition level of 9.8 kg Nha¬¹ yr¬¹ is equivalent to a total deposition of 15 kg Nha¬¹ yr¬¹, implying a net sequestration near 470 kg C per kg N of total deposition. We question the ecological plausibility of the relationship and show, from a multifactor analysis of European forest measurements, how interactions with site productivity and environment imply a much smaller NEP response to N deposition. However, even this lower response is unlikely. ¹⁵N-lab experiments in temperate forests indicate that N reten occurs in stem wood but mainly in the soil. Consider of N and the ranges in C:N ratios in forest ecosystem con this implies a carbon response near 50 kg C per kg N in fo tems. Even though the above-ground C sequestration underestimated by Nadelhoffer et al., owing to neglecting of direct foliar uptake. this effect is likely to be small ground foliar N uptake is generally less than 5 kg l (ref. 11), whereas below-ground uptake is generally 50 kg Nha⁻¹ yr⁻¹. Furthermore, similar results are four term (15-30 yr) nitrogen-fertilizer trials at rates of nitrog below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13) and in process-below 50 kg N ha⁻¹ yr⁻¹ (refs. 12, 13)

de Vries, Sutton et al. *Nature* **451,** 15 Feb 2008

Temperate Forest – Höglwald, Germany

Nitrogen budgets for two contrasting NitroEurope Level 3 forests

	Finland- Hyytiälä	Germany- Höglwald
N input (kg N / ha /yr)	4.1	41.5
N storage (kg N / ha)		
Vegetation	190	1350
Soil (organic N)	1570	9000
N loss (kg N / ha / yr)	1.8	34
Retained inputs	56%	18%

Vesala, Butterbach Bahl et al.

Upscaling to the EU27

Mitigating nitrogen and the greenhouse balance

Effect of measures in EU Nitrates Policy

Nutrient management: soil

- Balanced fertilization
 - \rightarrow Lower N input
- Maximum manure application rate
 - \rightarrow Lower N input
 - May be compensated by fertilizer
- Manure incorporation
 - \rightarrow Lower NH₃ emissions
 - \rightarrow potentially higher N₂O emission
- Urea substitution by NH₄ fertilizers
 - → Lower N₂O emission (0.67×) (see Lesschen&Velthof)

A package of measures in agriculture to reduce N₂O emissions

■ Relative changes in N_2O emission (%) for EU27

Measure	Housing and storage	Manure and fertilizer application	Other N inputs ¹⁾	Total
1. Reduced protein content	-1.4	-0.5	0.0	-1.9
2. Low NH _{3 em} housing, storage	0.0	0.0	0.0	0.0
3. Balanced fertilization	0.0	-8.8	-2.7	-11.5
4. Max manure application rate	0.0	-7.1	0.1	-7.0
5. Manure incorporation	0.0	0.2	0.0	0.2
6. Urea substitution	0.0	-0.3	0.0	-0.3
7. Restoration histosols	0.0	-0.8	-0.2	-1.0
All measures	-1.4	-17.4	-2.7	-21.5

¹⁾ Includes emission through soil inputs by deposition, mineralization, fixation and crop residues

From N trade-offs to N co-benefits

- Stage 1: Ignore the interactions
- Stage 2: Highlight the trade-offs at field scale (pollution swapping: NH₃ vs N₂O)
- Stage 3: Discover that swapping is net neutral at the regional scale (NH₃ deposition effects)
- Stage 4: Start listing the co-benefits (low NH₃ emission, reducing fertilizer inputs and net N₂O savings)
- Stage 5: Quantify the climate benefits of reducing N losses and improving NUE.

A century of Haber Ammonia Global N fertilizer consumption 1900-2100

Conclusions

- Nitrogen fertilisers support around 48% of world population
- Many +/- effects: European N has a net cooling effect on climate
- Important effects of nitrogen on water and air quality, human health and biodiversity
- Smart management of the nitrogen cycle
 - Meet pollution targets with climate co-benefits
 - Our ambition for food & energy consumption

Policies & People

- As NO_x emissions decrease, NH₃ will increasingly dominate future N_r emissions.
 NH₃ reductions are key improving NUE and reducing N₂O emissions.
- International conventions need to work together more effectively; an interconvention agreement should be explored
- Societal choice and behavioural change provide major opportunities.
- "Eat right: improve your health and help protect the environment at the same time."

ENA Launch
11-15 April 2011
Edinburgh
International Conference
"Nitrogen & Global Change

www.nitrogen2011.org

